In the early days, we configured a simple Pod Disruption Budget (PDB) across a majority of our service deployments. However, as we’ve scaled and refined our infrastructure, we encountered a few inefficiencies that required a more nuanced solution.
Our original PDB setup was straightforward:
This worked well for many scenarios, but we quickly discovered a flaw in the way minAvailable
was calculated, particularly for services with fewer than five pods.
According to the Kubernetes documentation, the minAvailable
calculation always rounds up, meaning that service deployments running fewer than five pods were effectively locked from any disruptions (minAvailable == total number of pods).
While this ensures high availability, it also introduced several long-term challenges:
Resource waste: During traffic slowdowns, hosts would end up stuck running a single pod that couldn’t be removed. This resulted in wasted resources during periods of low traffic, leading to higher costs and less efficient scaling.
Blocked updates: Automated rolling updates to node pools were often blocked, slowing down our ability to deploy improvements or patches. This became especially frustrating during time-sensitive updates, such as security patches, when certain nodes were left running outdated configurations.
To resolve these issues, we revisited our approach to Pod Disruption Budgets. Instead of using minAvailable
, we switched to maxUnavailable
. This change addressed our problem in a simple yet effective way.
Just as minAvailable
rounds up its calculations, so does maxUnavailable
. By defining maxUnavailable
, we were able to guarantee that at least one pod could always be disrupted, even in deployments with fewer than five pods.
This small change had a big impact, allowing us to handle disruptions in a more controlled and flexible manner while preventing resource waste and blocking issues.
Here’s what our updated PDB configuration looks like:
Now, with this updated configuration, our service deployments can gracefully handle disruptions, even during low-traffic periods. By ensuring that at least one pod can be interrupted, we’ve mitigated the long-term challenges and improved both our resource management and deployment velocity.
For teams managing Kubernetes service deployments, especially those with variable pod counts, swapping to maxUnavailable
can be a small but impactful change.
By allowing one pod to be disrupted at all times, we prevent unnecessary resource waste and ensure that rolling updates can happen without unnecessary friction.
Standard deviation and variance are essential for understanding data spread, evaluating probabilities, and making informed decisions. Read More ⇾
We’ve expanded our SRM debugging capabilities to allow customers to define custom user dimensions for analysis. Read More ⇾
Detect interaction effects between concurrent A/B tests with Statsig's new feature to ensure accurate experiment results and avoid misleading metric shifts. Read More ⇾
Statsig's biggest year yet: groundbreaking launches, global events, record scaling, and exciting plans for 2025. Explore our 2024 milestones and what’s next! Read More ⇾
A guide to reporting A/B test results: What are common mistakes and how can you make sure to get it right? Read More ⇾
This guide explains why the allocation point may differ from the exposure point, how it happens, and what you to do about it. Read More ⇾